

Additive Manufacturing of Ceramics Opportunities and Challenges

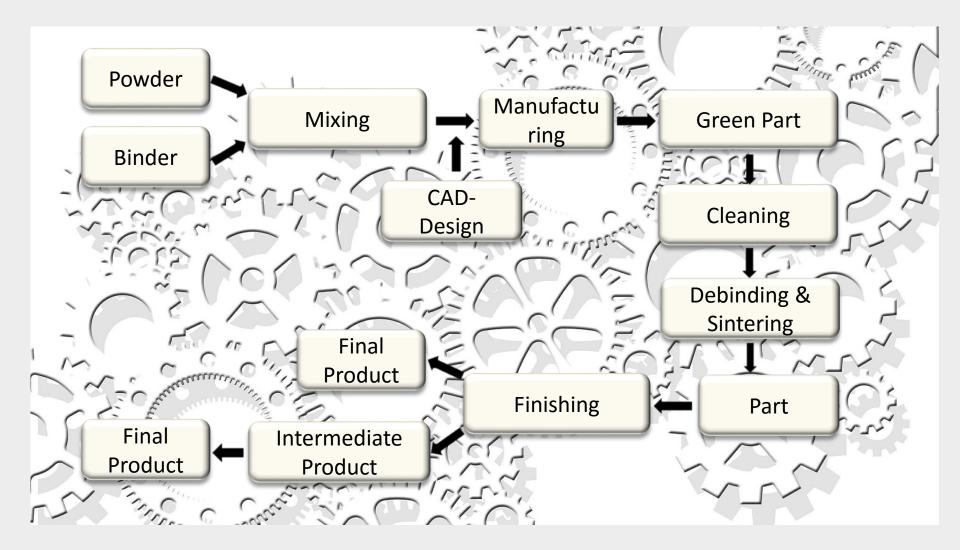
Dr. Johannes Homa

Nancy | 9.6.2016

Market for Ceramic AM

High-Performance Ceramics MATERIALS LITHOZ

Company	Process	Material	Machines sold
Lithoz	LCM-Technology	Slurry	> 25
Prodways	Moving DLP	Paste	1-3
3D Ceram	Stereolithographie	Paste	1-3
Schunk	Binder-Jetting	Powder, Only RBSiC	Only service provider



Additive Manufacturing of Ceramics

- Available materials are limited
- Processes are complex
- Whole process chain needs to be considered
- O Market is still underdeveloped
- O Potential of AM is not yet fully understood
- O No ceramic success stories
- O Many myths around AM

Process Chain

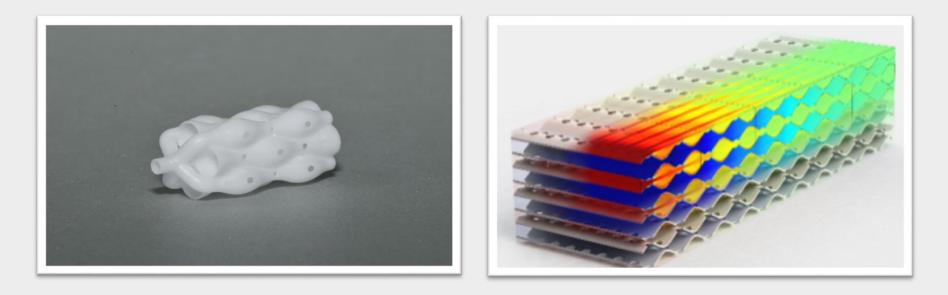
Myth 1 There is one superior AMT

Superior AMT

Schunk Ingenieurkeramik InstrinSiC - SiSiC Lithoz GmbH LCM-Technology

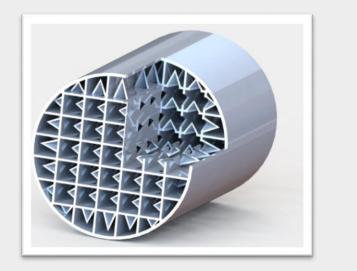
Myth 2 Additive manufacturing is simple

Just hit "print" and you are done


- O Understanding the limitations and rules
- O Designing for AM
- Choosing the right parameters
- O Understand the technology and the machine
- O Playing time is required
- Development of expertise is important

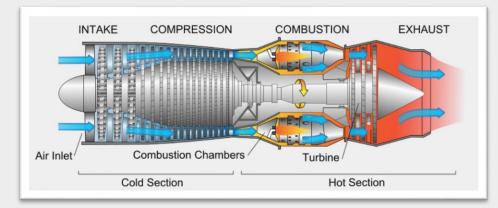
Myth 3 Designing for AM is state of the art

Superior AMT



- Completely new design with varying channel cross section and interconnections
- Improved efficiency due to turbulent flow
- Shorter reaction way
- Less material for mixer

Micro Reactor



- Out-outs and flow guiding elements (spoilers)
- O Deflection of the fluid in the individual channels
- Increased wall contact
- Productivity and efficiency is increased
- Less material for carrier and catalyst

Casting Cores

- Used for production of turbine blades
 Complicated design
- Support structures necessary

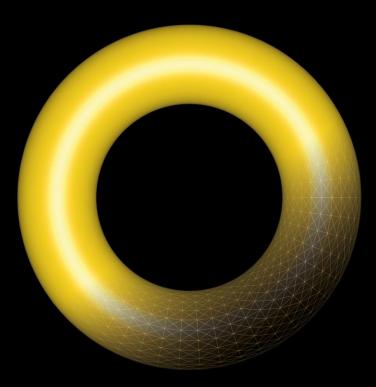
	Volume [mm ³]	Wt %
Core geometry	4868	
Support structure	61	+1%
Waste material	541	+11%

Casting Cores

- Whole process chain has to be considered
- New designs possible (hollow structures)

	Injection Moulding	Paste AM	Slurry AM
Core geometry	Small Aerospace		
Support structure	N/A	+1%	+1%
Waste material (e.g. sprues, resin on part)	+10-20%	15%	+11%
Potential design savings (hollow features)	N/A	N/A	-10%
TOTAL (additional wt% waste)	10-20%	16%	2-11%

Conclusion


- AM provides new opportunities in terms of design and functionality
- Material efficiency due to better performance
- Whole process chain important to realize the full value
- Fruitful partnerships necessary
- Out-of-the-box-thinking necessary
- Freedom and the scope for development necessary

Dr. Johannes Homa Tel: +43 (0)650 4662 563 jhoma@lithoz.com

www.lithoz.com

LITHOZ

Manufacture the future.

